
1

Logic Design – Lab 4: “Multiplexers, decoders and code converters”

For the report, please complete the tasks marked in green boxes only! (ver. 2020)

1. MULTIPLEXERS and DEMULTIPLEXERS

A multiplexer (or mux) is a combinational circuit that selects binary information from one of
many input lines and directs it to a single output line. The selection of particular input line is
controlled by a set of selection lines (address lines). Normally, there are 2N input lines and N
selection lines whose bit combinations determine which input is selected. An electronic
multiplexer can be considered as a multiple-input, single-output switch, and is also called a
data selector.

Fig. 1. Symbol of multiplexer.

where: x0, x1, …, xN-1 – input lines,
A0, A1, …, AM-1 – selection lines,
S – strobe input (enable input),
Y – output.

Conversely, a demultiplexer (or demux) is a device taking a single input signal and selecting
one of many data-output-lines, which is connected to the single input. An electronic
demultiplexer can be considered as a single-input, multiple-output switch. A multiplexer is
often used with a complementary demultiplexer on the receiving end.

Fig. 2. Symbol of demultiplexer.

where: x – input,
A0, A1, …, AM-1 – selection lines,
Y0, Y1, …, YN-1 – output lines.

2

LAB TASKS:

1. Construct the logic diagram of a 4 x 1 Mux (4-inputs, 1-bit):

Fig. 3. Diagram of the 4-inputs, 1-bit multiplexer ant its logic output equation.

2. Construct the logic diagram of a 1 x 4 Demux (1-bit, 4-outputs):

Fig. 4. Diagram of the 1-bit, 4-outputs demultiplexer.

Simulate both of logic diagrams as above using Electronic Workbench software to verify that
designs work correctly according to specifications.

3

2. Combinational Circuits Implementation using Multiplexers

Multiplexers can also be used to implement Boolean functions of multiple variables by the
way of the multiplexer selection inputs. The individual minterms can be selected by the data
inputs, thereby providing a method of implementing a Boolean function of n variables with a
multiplexer that has n selection inputs and 2n data inputs, one for each minterms.

The following shows an efficient method for implementing a Boolean function of n variables
with a multiplexer that has n-1 selection inputs. The first n-1 variables of the function are
connected to the selection inputs of the multiplexer. The remaining single variable of the
function is used for the data inputs. If a single variable is denoted by z, each data input of the
multiplexer will be z, z’, 1, or 0. To demonstrate this procedure, consider the Boolean
function:

F(x,y,z) = Σ(1,2,6,7).

This function of three variables can be implemented with a four-to-one-line multiplexer as
shown in Figure A3.1. The two variables X and Y are applied to the selection lines in that
order; X is connected to the S1 input and y to the S0 input. The values for the data input lines
are determined from the truth table of the function. When XY = 00, output F is equal to z
because F = 0 when Z = 0 and F = 1 when Z = 1. This requires that variable z be applied to
data input 0. The operation of the multiplexer is such that when XY = 00, data input 0 has a
path to the output, and that makes F equal to Z.

Fig. 5. Implementation of a Boolean function using a Multiplexer.

In a similar fashion, we can determine the required input to data lines 1, 2, and 3 from the
value of F when xy=01, 10, and 11, respectively. This example shows all four possibilities
that can be obtained for the data inputs.

The general procedure for implementing any Boolean function of n variables with a
multiplexer with n-1 selection inputs and 2n-1data inputs follows from the example above. To
begin with, Boolean function is listed in a truth table. Then first n-1 variables in the table are
applied to the selection inputs of the multiplexer. For each combination of the selection
variables, we evaluate the output as a function of the last variable. This function can be 0, 1,
the variables, or the complement of the variable. These values are then applied to the data
inputs in the proper order.

4

LAB TASK:

3. Use 8-to-1 multiplexer to design a circuit for the following function of 4 inputs:

Solution:

Multiplexer equation:

Fig. 6. Combinational Circuits Implementation using Multiplexers. a) Karnaugh map of given boolean function,
 b) Karnaugh map of multiplexer equation, c) implementation with use of 74151 TTL circuit.

Simulate logic diagram as above using Electronic Workbench software to verify that design
works correctly according to specifications.

Tip: see example file: “example_lab4 - 74151 multiplexer.ewb”

5

3. BCD and Gray codes conversion

Decimal Binary-Coded
Decimal (BCD) /

8421 code

Gray code

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0011
0010
0100
0110
0111
0101
1100
1101
1111
1110
1010
1011
1001
1000

6

LAB TASK:

4. Construct the BCD/8421 to Gray code converter which implements the following

equations:

where: a, b, c, d – inputs (data in BCD code),

W, X, Y, Z – outputs (in Gray code).

BCD to Gray code converter Karnaugh maps:	

	

					

Fig. 7. XOR implementation of BCD to Gray code converter.

Simulate logic diagram as above using Electronic Workbench software to verify that design
works correctly according to specifications (check all possible inputs states).

7

LAB TASK:

5. Construct the Gray code to the BCD/8421 code converter which implements the following

equations:

where: w, x, y, z – inputs (Gray code)

A, B, C, D – outputs (BCD/8421 code),

Gray code to BCD/8421 converter Karnaugh maps:	

	

					

Fig. 8. Implementation of Gray to BCD code converter with XOR gates.

Simulate logic diagram as above using Electronic Workbench software to verify that design
works correctly according to specifications (check all possible inputs states).

8

4. ENCODERS/DECODERS

LAB TASK:

6. Construct the Decimal (“1 of 10”) to BCD encoder and simulate it using Electronic

Workbench software to verify that it operates correctly according to truth table (check all
possible input conditions):

7. Construct the BCD to Decimal decoder (“1 of 10”) and simulate it using EWB software to

verify that it operates correctly according to truth table (check all possible input
conditions). It may be used circuit build with simple gates only as shown on diagram as
below, or with use of 7442 TTL:

9

BCD to Decimal decoder (“1 of 10”) truth table:

7442 (TTL)

